Simultaneously continuous retraction and Bishop–Phelps–Bollobás type theorem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Retraction Theorem for Distributed Synthesis

We present a general theorem for distributed synthesis problems in coordination games with ω-regular objectives of the form: If there exists a winning strategy for the coalition, then there exists an “essential” winning strategy, that is obtained by a retraction of the given one. In general, this does not lead to finite-state winning strategies, but when the knowledge of agents remains bounded,...

متن کامل

On Tychonoff's type theorem via grills

‎Let ${X_{alpha}:alphainLambda}$ be a collection of topological spaces‎, ‎and $mathcal {G}_{alpha}$ be a grill on $X_{alpha}$ for each $alphainLambda$‎. ‎We consider Tychonoffrq{}s type Theorem for $X=prod_{alphainLambda}X_{alpha}$ via the above grills and a natural grill on $X$ ‎related to these grills, and present a simple proof to this theorem‎. ‎This immediately yields the classical theorem...

متن کامل

Bishop-Phelps type Theorem for Normed Cones

In this paper the notion of  support points of convex sets  in  normed cones is introduced and it is shown that in a  continuous normed cone, under the appropriate conditions, the set of support points of a  bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.

متن کامل

Mod 2 degree and a generalized No Retraction Theorem

Three well-known equivalent theorems are the Brouwer Fixed Point Theorem (BFPT), the No Retraction Theorem (NRT) and Sperner’s Lemma (SL). The equivalence of the first two is a standard result in topology. The BFPT can be derived directly from SL, which is often proved combinatorially; it is also known that the BFPT implies SL. See [16] for discussion and references of the interrelations of the...

متن کامل

The Continuous Hexachordal Theorem

The Hexachordal Theorem may be interpreted in terms of scales, or rhythms, or as abstract mathematics. In terms of scales it claims that the complement of a chord that uses half the pitches of a scale is homometric to—i.e., has the same interval structure as—the original chord. In terms of onsets it claims that the complement of a rhythm with the same number of beats as rests is homometric to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2014

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2014.06.009